Indian Statistical Institute First Semester Back Paper Exam, 2006-2007 B.Math II Year Analysis III

Time: 3 hrs

Date: -01-07 Instructor: Pl Muthuramalingam

Note: Maximum marks you can get is 40 out of 41.

- 1. Let $V = \{(x, y, z): r^2 \le x^2 + y^2 + z^2 \le 1, z \ge 0, y \ge 0, x \ge 0\}$ where 0 < r < 1 and S be the boundary of V. Describe the surface S with outernormal orientation. [10]
- 2. State Stokes theorem and Divergence theorem. [4]
- 3. Prove Weirstrass theorem for the interval [0, 1]. [10]
- 4. Let S be nonempty set. $f_1, f_2, \ldots : S \to R$ are bounded functions and $f_n \to g$ uniformly on S for a suitable function g. Show that $\sup_n \sup_{x \in S} |f_n(x)|$ is finite. [5]
- 5. Let $\phi : \mathbb{R}^2 \to \mathbb{R}$ be the function $\phi(x, y) = x^2 + y^2 1$, so that $\phi(1, 0) = 0$. Show that there does not exist a continuously differentiable function $g: (1 - \delta, 1 + \delta) \to \mathbb{R}$ such that $\phi(t, g(t)) = 0$, with g(1) = 0. [3]
- 6. Let a, b > 0 c < 0. Assume that $ax^2 + 2hxy + by^2 + c = 0$ represents an ellipse. Find the area enclosed by it in terms of a, b, c, h. [4]
- 7. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth scalar field and $K : \mathbb{R}^3 \to \mathbb{R}^3$ a smooth vector field. Show that $\operatorname{div}(fK) = f \operatorname{div} K + (\nabla f) \cdot K$. [3]
- 8. Let $f_n(x) = \frac{1}{1+nx}$ for $x \ge 0$ $n = 1, 2, 3, \dots$ Show that f_n does not converge uniformly on $[0, \delta]$ for any $\delta > 0$. [2]